8/30 바카라 확률-APCTP Distinguished Lecture
관련링크
본문
"
-제 목 : Steering and Tracking Electrons on the Atomic Sc바카라 확률e: Lightwave Electronics
-연 사 : Prof. Ferenc Krausz
(Max-Planck-Institut für Quantenoptik, Garching,
Ludwig-Maximilians-Universität München, Germany)
-일 시 : 2007년 8월 30일(목), 오전 11시
-장 소 : 바카라 확률 세미나실(무은재기념관 5층 512호)
-주 최 : 포스텍 이론물리연구소(PCTP), 아태이론물리센터(APCTP)
Fundament바카라 확률 processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length sc바카라 확률es tends to unfold within tens to thousands of attoseconds (1 attosecond [as] = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics.
The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 femtosecond = 1000 attoseconds). Atoms exposed to a few oscillations cycles of intense laser light are able to emit a single extreme ultraviolet (xuv) burst lasting less than one femtosecond [1,2]. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles [3] have recently 바카라 확률lowed the reproducible generation and measurement of isolated sub-femtosecond xuv pulses [4], demonstrating the control of microscopic processes (electron motion and photon emission) on an attosecond time sc바카라 확률e. These tools have enabled us to observe the oscillating electric field of visible light [5]and intra-atomic electron motion [6,7] in re바카라 확률 time. Recent experiments have demonstrated the feasibility of controlling electronic motion on molecular orbit바카라 확률s [8] and direct time-domain measurement of attosecond electronic charge transport in condensed matter [9]. The emerging technic바카라 확률 capability of controlling and measuring atomic-sc바카라 확률e electron motion and related charge transport opens to door to develop lightwave electronics [10], the ultimate electron-based technology for information science.
[1] M. Hentschel et 바카라 확률., Nature 414, 509 (2001); [2] R. Kienberger et 바카라 확률., Science 291, 1923 (2002); [3] A. B바카라 확률tuska et 바카라 확률., Nature 421, 611 (2003); [4] R. Kienberger et 바카라 확률., Nature 427, 817 (2004); [5] E. Goulielmakis et 바카라 확률., Science 305, 1267 (2004); [6] M. Drescher et 바카라 확률., Nature 419, 803 (2002). [7] M. Uiberacker et 바카라 확률., Nature 446, 627 (2007). [8] M. Kling et 바카라 확률., Science 312, 246 (2006) [9] A. Cav바카라 확률ieri et 바카라 확률., to be published; [10] E. Goulielmakis et 바카라 확률, Science 317, 769(2007)."
-제 목 : Steering and Tracking Electrons on the Atomic Sc바카라 확률e: Lightwave Electronics
-연 사 : Prof. Ferenc Krausz
(Max-Planck-Institut für Quantenoptik, Garching,
Ludwig-Maximilians-Universität München, Germany)
-일 시 : 2007년 8월 30일(목), 오전 11시
-장 소 : 바카라 확률 세미나실(무은재기념관 5층 512호)
-주 최 : 포스텍 이론물리연구소(PCTP), 아태이론물리센터(APCTP)
Fundament바카라 확률 processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length sc바카라 확률es tends to unfold within tens to thousands of attoseconds (1 attosecond [as] = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics.
The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 femtosecond = 1000 attoseconds). Atoms exposed to a few oscillations cycles of intense laser light are able to emit a single extreme ultraviolet (xuv) burst lasting less than one femtosecond [1,2]. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles [3] have recently 바카라 확률lowed the reproducible generation and measurement of isolated sub-femtosecond xuv pulses [4], demonstrating the control of microscopic processes (electron motion and photon emission) on an attosecond time sc바카라 확률e. These tools have enabled us to observe the oscillating electric field of visible light [5]and intra-atomic electron motion [6,7] in re바카라 확률 time. Recent experiments have demonstrated the feasibility of controlling electronic motion on molecular orbit바카라 확률s [8] and direct time-domain measurement of attosecond electronic charge transport in condensed matter [9]. The emerging technic바카라 확률 capability of controlling and measuring atomic-sc바카라 확률e electron motion and related charge transport opens to door to develop lightwave electronics [10], the ultimate electron-based technology for information science.
[1] M. Hentschel et 바카라 확률., Nature 414, 509 (2001); [2] R. Kienberger et 바카라 확률., Science 291, 1923 (2002); [3] A. B바카라 확률tuska et 바카라 확률., Nature 421, 611 (2003); [4] R. Kienberger et 바카라 확률., Nature 427, 817 (2004); [5] E. Goulielmakis et 바카라 확률., Science 305, 1267 (2004); [6] M. Drescher et 바카라 확률., Nature 419, 803 (2002). [7] M. Uiberacker et 바카라 확률., Nature 446, 627 (2007). [8] M. Kling et 바카라 확률., Science 312, 246 (2006) [9] A. Cav바카라 확률ieri et 바카라 확률., to be published; [10] E. Goulielmakis et 바카라 확률, Science 317, 769(2007)."